Innovation

Standard
innovation - 3

innovation – 3 (Photo credit: nyoin)

Courbe diffusion innovation

Courbe diffusion innovation (Photo credit: Wikipedia)

Innovation and Evaluation

Innovation and Evaluation (Photo credit: cambodia4kidsorg)

An Innovation Competence Process Coming From K...

An Innovation Competence Process Coming From Knowledge Management (Photo credit: Alex Osterwalder)

English: weWant2 was built to make innovation ...

English: weWant2 was built to make innovation pervasive by stimulating and sustaining individual and collective creativity, making it possible, for the first time, to promote innovation as a sum of personal and group dynamics, moving from “manager’s-driven innovation” towards “everyone’s-driven innovation”. (Photo credit: Wikipedia)

MSI+Innovation-1

MSI+Innovation-1 (Photo credit: Wikipedia)

Innovation

Innovation is the application of better solutions that meet new requirements, inarticulated needs, or existing market needs. This is accomplished through more effective productsprocessesservicestechnologies, or ideas that are readily available to markets,governments and society. The term innovation can be defined as something original and, as consequence, new that “breaks in to” the market or into society. One usually associates to new phenomena that are important in some way. A definition of the term, in line with these aspects, would be the following: “An innovation is something original, new, and important – in whatever field – that breaks in to (or obtains a foothold in) a market or society.”[1]

While something novel is often described as an innovation, in economics, management science and other fields of practice and analysis it is generally considered a process that brings together various novel ideas in a way that they have an impact on society.

Innovation differs from invention in that innovation refers to the use of a better and, as a result, novel idea or method, whereas invention refers more directly to the creation of the idea or method itself.

Innovation differs from improvement in that innovation refers to the notion of doing something different rather than doing the same thing better.

Inter-disciplinary views[edit]

Individual[edit]

Main article: Creativity

Creativity has been studied using many different approaches.

Society[edit]

Due to its widespread effect, innovation is an important topic in the study of economicsbusinessentrepreneurshipdesign,technologysociology, and engineering. In society, technological innovation aids in comfortconvenience, and efficiency in everyday lifecite . It can also lead to negative effects such as pollution or exploitation. For instance, the benchmarks in railroad equipment andinfrastructure added to greater safety, maintenance, speed, and weight capacity for passenger services. These innovations included wood to steel cars, iron to steel rails, stove-heated to steam-heated cars, gas lighting to electric lighting, diesel-powered to electric-diesel locomotives. By the mid-20th century, trains were making longer, faster, and more comfortable trips at lower costs for passengers.[2] Other areas that add to everyday quality of life include: the innovations to the light bulb from incandescent to compact fluorescent then LED technologies which offer greater efficiency, durability and brightness; adoption of modems to cellular phones, paving the way to smartphones which supply the public with internet access any time or place; cathode-ray tube to flat-screen LCD televisions and others.

Innovation is not only a modern phenomenon. Classicist Armand D’Angour has argued that Ancient Greece provides a model for innovation and reactions to it.[3]

Innovation is the development of new value through solutions that meet new needs, or adding value to old customers by providing new ways of maximizing their current level of productivity. It is the catalyst to growth.

Business and economics[edit]

Main article: innovation economics

In business and economics, innovation is the catalyst to growth. With rapid advancements in transportation and communications over the past few decades, the old world concepts of factor endowments and comparative advantage which focused on an area’s unique inputs are outmoded for today’s global economy. Economist Joseph Schumpeter, who contributed greatly to the study of innovation, argued that industries must incessantly revolutionize the economic structure from within, that is innovate with better or more effective processes and products, such as the shift from the craft shop to factory. He famously asserted that “creative destruction is the essential fact about capitalism.”[4] In addition, entrepreneurs continuously look for better ways to satisfy their consumer base with improved quality, durability, service, and price which come to fruition in innovation with advanced technologies and organizational strategies.[5]

One prime example is the explosive boom of Silicon Valley startups out of the Stanford Industrial Park. In 1957, dissatisfied employees of Shockley Semiconductor, the company of Nobel laureate and co-inventor of the transistor William Shockley, left to form an independent firm, Fairchild Semiconductor. After several years, Fairchild developed into a formidable presence in the sector. Eventually, these founders left to start their own companies based on their own, unique, latest ideas, and then leading employees started their own firms. Over the next 20 years, this snowball process launched the momentous startup company explosion of information technologyfirms. Essentially, Silicon Valley began as 65 new enterprises born out of Shockley’s eight former employees.[6]

Organizations[edit]

In the organizational context, innovation may be linked to positive changes in efficiencyproductivityqualitycompetitivenessmarket share, and others. However, recent research findings highlight the complementary role of organizational culture in enabling organizations to translate innovative activity into tangible performance improvements.[7]

All organizations can innovate, including for example hospitals,[8] universities, and local governments. For instance, former MayorMartin O’Malley pushed the City of Baltimore to use CitiStat, a performance-measurement data and management system that allows city officials to maintain statistics on crime trends to condition of potholes. This system aids in better evaluation of policies and procedures with accountability and efficiency in terms of time and money. In its first year, CitiStat saved the city $13.2 million.[9] Evenmass transit systems have innovated with hybrid bus fleets to real-time tracking at bus stands. In addition, the growing use of mobile data terminals in vehicles that serves as communication hubs between vehicles and control center automatically send data on location, passenger counts, engine performance, mileage and other information. This tool helps to deliver and manage transportation systems.[10]

Still other innovative strategies include hospitals digitizing medical information in electronic medical records; HUD’s HOPE VI initiatives to eradicate city’s severely distressed public housing to revitalized, mixed income environments; the Harlem Children’s Zone that uses a community-based approach to educate local area children; and EPA’s brownfield grants that aids in turning over brownfields forenvironmental protectiongreen spacescommunity and commercial development.

Sources of Innovation[edit]

There are several sources of innovation. It can occur as a result of a focus effort by a range of different agents, by chance, or as a result of a major system failure.

According to Peter F. Drucker the general sources of innovations are different changes in industry structure, in market structure, in local and global demographics, in human perception, mood and meaning, in the amount of already available scientific knowledge, etc..

Original model of three phases of the process of Technological Change

In the simplest linear model of innovation the traditionally recognized source ismanufacturer innovation. This is where an agent (person or business) innovates in order to sell the innovation.

Another source of innovation, only now becoming widely recognized, is end-user innovation. This is where an agent (person or company) develops an innovation for their own (personal or in-house) use because existing products do not meet their needs. MIT economist Eric von Hippel has identified end-user innovation as, by far, the most important and critical in his classic book on the subject, Sources of Innovation.[11]

The robotics engineer Joseph F. Engelberger asserts that innovations require only three things:

  1. A recognized need,
  2. Competent people with relevant technology, and
  3. Financial support.[12]

However, innovation processes usually involve: identifying needs, developing competences, and finding financial support.

The Kline Chain-linked model of innovation[13] places emphasis on potential market needs as drivers of the innovation process, and describes the complex and often iterative feedback loops between marketing, design, manufacturing, and R&D.

Innovation by businesses is achieved in many ways, with much attention now given to formal research and development (R&D) for “breakthrough innovations.” R&D help spur on patents and other scientific innovations that leads to productive growth in such areas as industry, medicine, engineering, and government.[14] Yet, innovations can be developed by less formal on-the-job modifications of practice, through exchange and combination of professional experience and by many other routes. The more radical and revolutionary innovations tend to emerge from R&D, while more incremental innovations may emerge from practice – but there are many exceptions to each of these trends.

An important innovation factor includes customers buying products or using services. As a result, firms may incorporate users in focus groups (user centred approach), work closely with so called lead users (lead user approach) or users might adapt their products themselves. The lead user method focuses on idea generation based on leading users to develop breakthrough innovations. U-STIR, a project to innovate Europe’s surface transportation system, employs such workshops.[15] Regarding this user innovation, a great deal of innovation is done by those actually implementing and using technologies and products as part of their normal activities. In most of the times user innovators have some personal record motivating them. Sometimes user-innovators may become entrepreneurs, selling their product, they may choose to trade their innovation in exchange for other innovations, or they may be adopted by their suppliers. Nowadays, they may also choose to freely reveal their innovations, using methods like open source. In such networks of innovation the users or communities of users can further develop technologies and reinvent their social meaning.[16][17]

Goals/failures[edit]

Programs of organizational innovation are typically tightly linked to organizational goals and objectives, to the business plan, and tomarket competitive positioning. One driver for innovation programs in corporations is to achieve growth objectives. As Davila et al. (2006) notes, “Companies cannot grow through cost reduction and reengineering alone… Innovation is the key element in providing aggressive top-line growth, and for increasing bottom-line results.” [18]

One survey across a large number of manufacturing and services organizations found, ranked in decreasing order of popularity, that systematic programs of organizational innovation are most frequently driven by: Improved quality, Creation of new markets, Extension of the product range, Reduced labor costs, Improved production processes, Reduced materials, Reduced environmental damage, Replacement of products/services, Reduced energy consumption, Conformance to regulations.[18]

These goals vary between improvements to products, processes and services and dispel a popular myth that innovation deals mainly with new product development. Most of the goals could apply to any organisation be it a manufacturing facility, marketing firm, hospital or local government. Whether innovation goals are successfully achieved or otherwise depends greatly on the environment prevailing in the firm.[19]

Conversely, failure can develop in programs of innovations. The causes of failure have been widely researched and can vary considerably. Some causes will be external to the organization and outside its influence of control. Others will be internal and ultimately within the control of the organization. Internal causes of failure can be divided into causes associated with the cultural infrastructure and causes associated with the innovation process itself. Common causes of failure within the innovation process in most organizations can be distilled into five types: Poor goal definition, Poor alignment of actions to goals, Poor participation in teams, Poor monitoring of results, Poor communication and access to information.[20]

Diffusion of innovation[edit]

InnovationLifeCycle.jpg

Diffusion of innovation research was first started in 1903 by seminal researcher Gabriel Tarde, who first plotted the S-shaped diffusion curve. Tarde (1903) defined the innovation-decision process as a series of steps that includes:[21]

  1. First knowledge
  2. Forming an attitude
  3. A decision to adopt or reject
  4. Implementation and use
  5. Confirmation of the decision

Once innovation occurs, innovations may be spread from the innovator to other individuals and groups. This process has been proposed that the life cycle of innovations can be described using the ‘s-curve‘ or diffusion curve. The s-curve maps growth of revenue or productivity against time. In the early stage of a particular innovation, growth is relatively slow as the new product establishes itself. At some point customers begin to demand and the product growth increases more rapidly. New incremental innovations or changes to the product allow growth to continue. Towards the end of its life cycle growth slows and may even begin to decline. In the later stages, no amount of new investment in that product will yield a normal rate of return

The s-curve derives from an assumption that new products are likely to have “product life”. i.e. a start-up phase, a rapid increase in revenue and eventual decline. In fact the great majority of innovations never get off the bottom of the curve, and never produce normal returns.

Innovative companies will typically be working on new innovations that will eventually replace older ones. Successive s-curves will come along to replace older ones and continue to drive growth upwards. In the figure above the first curve shows a current technology. The second shows an emerging technology that currently yields lower growth but will eventually overtake current technology and lead to even greater levels of growth. The length of life will depend on many factors.[22]

Measures[edit]

There are two different types of measures for innovation: the organizational level and the political level.

Organizational level[edit]

The measure of innovation at the organizational level relates to individuals, team-level assessments, and private companies from the smallest to the largest. Measure of innovation for organizations can be conducted by surveys, workshops, consultants or internal benchmarking. There is today no established general way to measure organizational innovation. Corporate measurements are generally structured around balanced scorecards which cover several aspects of innovation such as business measures related to finances, innovation process efficiency, employees’ contribution and motivation, as well benefits for customers. Measured values will vary widely between businesses, covering for example new product revenue, spending in R&D, time to market, customer and employee perception & satisfaction, number of patents, additional sales resulting from past innovations.[23]

Political level[edit]

For the political level, measures of innovation are more focused on a country or region competitive advantage through innovation. In this context, organizational capabilities can be evaluated through various evaluation frameworks, such as those of the European Foundation for Quality Management. The OECD Oslo Manual (1995) suggests standard guidelines on measuring technological product and process innovation. Some people consider the Oslo Manual complementary to the Frascati Manual from 1963. The new Oslo manual from 2005 takes a wider perspective to innovation, and includes marketing and organizational innovation. These standards are used for example in the European Community Innovation Surveys.[24]

Other ways of measuring innovation have traditionally been expenditure, for example, investment in R&D (Research and Development) as percentage of GNP (Gross National Product). Whether this is a good measurement of innovation has been widely discussed and the Oslo Manual has incorporated some of the critique against earlier methods of measuring. The traditional methods of measuring still inform many policy decisions. The EU Lisbon Strategy has set as a goal that their average expenditure on R&D should be 3% of GDP.[25]

Indicators[edit]

Many scholars claim that there is a great bias towards the “science and technology mode” (S&T-mode or STI-mode), while the “learning by doing, using and interacting mode” (DUI-mode) is widely ignored. For an example, that means you can have the better high tech or software, but there are also crucial learning tasks important for innovation. But these measurements and research are rarely done.

A common industry view (unsupported by empirical evidence) is that comparative cost-effectiveness research (CER) is a form of price control which, by reducing returns to industry, limits R&D expenditure, stifles future innovation and compromises new products access to markets.[26] Some academics claim the CER is a valuable value-based measure of innovation which accords truly significant advances in therapy (those that provide ‘health gain’) higher prices than free market mechanisms.[27] Such value-based pricing has been viewed as a means of indicating to industry the type of innovation that should be rewarded from the public purse.[28] The Australianacademic Thomas Alured Faunce has developed the case that national comparative cost-effectiveness assessment systems should be viewed as measuring ‘health innovation’ as an evidence-based concept distinct from valuing innovation through the operation of competitive markets (a method which requires strong anti-trust laws to be effective) on the basis that both methods of assessing innovation in pharmaceuticals are mentioned in annex 2C.1 of the AUSFTA.[29][30][31]

Rate of innovation[edit]

Several indexes exist that attempt to measure innovation include:

  • The Innovation Index, developed by the Indiana Business Research Center, to measure innovation capacity at the county or regional level in the U.S.[32]
  • The State Technology and Science Index, developed by the Milken Institute is a U.S. wide benchmark to measure the science and technology capabilities that furnish high paying jobs based around key components.
  • The Oslo Manual is focused on North America, Europe, and other rich economies.
  • The Bogota Manual, similar to the above, focuses on Latin America and the Caribbean countries.
  • The Creative Class developed by Richard Florida
  • The Innovation Capacity Index (ICI) published by a large number of international professors working in a collaborative fashion. The top scorers of ICI 2009–2010 being: 1. Sweden 82.2; 2. Finland 77.8; and 3. United States 77.5.
  • The Global Innovation Index is a global index measuring the level of innovation of a country, produced jointly by The Boston Consulting Group (BCG), the National Association of Manufacturers (NAM), and The Manufacturing Institute (MI), the NAM’s nonpartisan research affiliate. NAM describes it as the “largest and most comprehensive global index of its kind”.
  • The INSEAD Global Innovation Index
  • The INSEAD Innovation Efficacy Index
  • The NYCEDC Innovation Index

Global innovation index[edit]

Gnome globe current event.svg
This article is outdated. Please update this section to reflect recent events or newly available information. (August 2011)

This international innovation index is one of many research studies that try to build a ranking of countries related to innovation. Other indexes are the Innovations IndikatorInnovation Union ScoreboardEIU Innovation RankingBCG International Innovation IndexGlobal Competitiveness ReportWorld Competitiveness ScoreboardITIF Index. The top 3 countries among all these different indexes are Switzerland, Sweden and Singapore.[33]

The global innovation index looks at both the business outcomes of innovation and government’s ability to encourage and support innovation through public policy. The study comprised a survey of more than 1,000 senior executives from NAM member companies across all industries; in-depth interviews with 30 of the executives; and a comparison of the “innovation friendliness” of 110 countries and all 50 U.S. states. The findings are published in the report, “The Innovation Imperative in Manufacturing: How the United States Can Restore Its Edge.”[34]

The report discusses not only country performance but also what companies are doing and should be doing to spur innovation. It looks at new policy indicators for innovation, including tax incentives and policies for immigrationeducation and intellectual property.

The latest index was published in March 2009.[35] To rank the countries, the study measured both innovation inputs and outputs. Innovation inputs included government and fiscal policyeducation policy and the innovation environment. Outputs included patents,technology transfer, and other R&D results; business performance, such as labor productivity and total shareholder returns; and the impact of innovation on business migration and economic growth. The following is a list of the twenty largest countries (as measured byGDP) by the International Innovation Index:

Rank Country Overall Innovation Inputs Innovation Performance
1  Philippines 2.26 1.75 2.55
2  United States 1.80 1.28 2.16
3  Japan 1.79 1.16 2.25
4  Sweden 1.64 1.25 1.88
5  Netherlands 1.55 1.40 1.55
6  Canada 1.42 1.39 1.32
7  United Kingdom 1.42 1.33 1.37
8  Germany 1.12 1.05 1.09
9  France 1.12 1.17 0.96
10  Australia 1.02 0.89 1.05
11  Spain 0.93 0.83 0.95
12  Belgium 0.86 0.85 0.79
13  China 0.73 0.07 1.32
14  Italy 0.21 0.16 0.24
15  India 0.06 0.14 −0.02
16  Russia −0.09 −0.02 −0.16
17  Mexico −0.16 0.11 −0.42
18  Turkey −0.21 0.15 −0.55
19  Indonesia −0.57 −0.63 −0.46
20  Brazil −0.59 −0.62 −0.51

Slowing of innovation[edit]

Jonathan Huebner, a physicist working at the Pentagon’s Naval Air Warfare Center, argued on the basis of both U.S. patents and world technological breakthroughs, per capita, that the rate of human technological innovation peaked in 1873 and has been slowing ever since.[36] In his article, he asked “Will the level of technology reach a maximum and then decline as in the Dark Ages?”[36] In later comments to New Scientist magazine, Huebner clarified that while he believed that we will reach a rate of innovation in 2024 equivalent to that of the Dark Ages, he was not predicting the reoccurrence of the Dark Ages themselves.[37]

His paper received some mainstream news coverage at the time.[38]

The claim has been met with criticism by John Smart, founder of the Acceleration Studies Foundation, who asserted that research bytechnological singularity researcher Ray Kurzweil and others showed a “clear trend of acceleration, not deceleration” when it came to innovations.[39] However, in 2010, Joseph A. Tainter, Deborah Strumsky, and José Lobo confirmed Huebner’s findings using U.S. Patent Office data.[40]

Government policies[edit]

Given the noticeable effects on efficiencyquality of life, and productive growth, innovation is a key factor in society and economy. Consequently, policymakers have long worked to develop environments that will foster innovation and its resulting positive benefits, from funding Research and Development to supporting regulatory change, funding the development of innovation clusters, and using public purchasing and standardisation to ‘pull’ innovation through.

For instance, experts are advocating that the U.S. federal government launch a National Infrastructure Foundation, a nimble, collaborative strategic intervention organization that will house innovations programs from fragmented silos under one entity, inform federal officials on innovation performance metrics, strengthen industry-university partnerships, and support innovation economic development initiatives, especially to strengthen regional clusters. Because clusters are the geographic incubators of innovative products and processes, a cluster development grant program would also be targeted for implementation. By focusing on innovating in such areas as precision manufacturinginformation technology, and clean energy, other areas of national concern would be tackled including government debtcarbon footprint, and oil dependence.[14] The U.S. Economic Development Administration understand this reality in their continued Regional Innovation Clusters initiative.[41] In addition, federal grants in R&D, a crucial driver of innovation and productive growth, should be expanded to levels similar to JapanFinlandSouth Korea, and Switzerland in order to stay globally competitive. Also, such grants should be better procured to metropolitan areas, the essential engines of the American economy.[14]

Many countries recognize the importance of research and development as well as innovation including Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT);[42] Germany’s Federal Ministry of Education and Research;[43] and the Ministry of Science and Technology in the People’s Republic of China [1]. Furthermore, Russia’s innovation programme is the Medvedev modernisation programme which aims at creating a diversified economy based on high technology and innovation. Also, theGovernment of Western Australia has established a number of innovation incentives for government departments. Landgate was the first Western Australian government agency to establish its Innovation Program.[44] The Cairns Region established the Tropical Innovation Awards in 2010 open to all businesses in Australia.[45] The 2011 Awards were extended to include participants from all Tropical Zone Countries.

See also[edit]

References[edit]

  1. Jump up^ Based on Frankelius, P. (2009), Questioning two myths in innovation literature, Journal of High Technology Management Research, Vol. 20, No. 1, pp. 40–51.
  2. Jump up^ EuDaly, K, Schafer, M, Boyd, Jim, Jessup, S, McBridge, A, Glischinksi, S. (2009). The Complete Book of North American Railroading. Voyageur Press. 1-352 pgs.
  3. Jump up^ D’AngourThe Greeks and the New. Cambridge University Press. ISBN 978-1-139-50061-6. Retrieved 1 September 2013.
  4. Jump up^ Schumpeter, J. A. (1943). Capitalism, Socialism, and Democracy (6 ed.). Routledge. pp. 81–84. ISBN 0-415-10762-8.
  5. Jump up^ Heyne, P., Boettke, P. J., and Prychitko, D. L. (2010). The Economic Way of Thinking. Prentice Hall, 12th ed. Pp. 163, 317–318.
  6. Jump up^ Gregory Gromov (2011). Silicon Valley History.http://www.netvalley.com/svhistory.html
  7. Jump up^ Salge, T.O. & Vera, A. 2012, Benefiting from Public Sector Innovation: The Moderating Role of Customer and Learning Orientation, Public Administration Review, Vol. 72, Issue 4, pp. 550-560
  8. Jump up^ Salge, T.O. & Vera, A. 2009, Hospital innovativeness and organizational performance, Health Care Management Review, Vol. 34, Issue 1, pp. 54–67.
  9. Jump up^ Perez, T. and Rushing R. (2007). The CitiStat Model: How Data-Driven Government Can Increase Efficiency and Effectiveness. Center for American Progress Report. Pp. 1–18.
  10. Jump up^ Transportation Research Board. (2007). Transit Cooperative Research Program (TCRP) Synthesis 70: Mobile Data Terminals. Pp. 1–5.http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_syn_70.pdf
  11. Jump up^ Von Hippel, E. (1988). Sources of Innovation. Oxford University Press. The Sources of Innovation
  12. Jump up^ Engelberger, J. F. (1982). Robotics in practice: Future capabilities. Electronic Servicing & Technology magazine.
  13. Jump up^ Kline (1985). Research, Invention, Innovation and Production: Models and Reality, Report INN-1, March 1985, Mechanical Engineering Department, Stanford University.
  14. Jump up to:a b c Mark, M., Katz, B., Rahman, S., and Warren, D. (2008) MetroPolicy: Shaping A New Federal Partnership for a Metropolitan Nation. Brookings Institution: Metropolitan Policy Program Report. Pp. 4–103.
  15. Jump up^ “U-STIR”. U-stir.eu. Retrieved 2011-09-07.
  16. Jump up^ Tuomi, I. (2002). Networks of Innovation. Oxford University Press. Networks of Innovation
  17. Jump up^ Siltala, R. (2010). Innovativity and cooperative learning in business life and teaching. University of Turku.
  18. Jump up to:a b Davila, T., Epstein, M. J., and Shelton, R. (2006). “Making Innovation Work: How to Manage It, Measure It, and Profit from It. ” Upper Saddle River: Wharton School Publishing.
  19. Jump up^ Khan, A. M (1989). Innovative and Noninnovative Small Firms: Types and Characteristics. Management Science, Vol. 35, no. 5. Pp. 597–606.
  20. Jump up^ O’Sullivan, David (2002). “Framework for Managing Development in the Networked Organisations”. Journal of Computers in Industry 47 (1): 77–88.
  21. Jump up^ Tarde, G. (1903). The laws of imitation (E. Clews Parsons, Trans.). New York: H. Holt & Co.
  22. Jump up^ Rogers, E. M. (1962). Diffusion of Innovation. New York, NY: Free Press.
  23. Jump up^ Davila, Tony; Marc J. Epstein and Robert Shelton (2006). Making Innovation Work: How to Manage It, Measure It, and Profit from It. Upper Saddle River: Wharton School Publishing
  24. Jump up^ OECD The Measurement of Scientific and Technological Activities. Proposed Guidelines for Collecting and Interpreting Technological Innovation Data. Oslo Manual. 2nd edition, DSTI, OECD / European Commission Eurostat, Paris 31 Dec 1995.
  25. Jump up^ “Industrial innovation – Enterprise and Industry”. Ec.europa.eu. Retrieved 2011-09-07.
  26. Jump up^ Chalkidou K, Tunis S, Lopert R, Rochaix L, Sawicki PT, Nasser M, Xerri B. Comparative Effectiveness research and Evidence-Based Health Policy: Experience from Four Countries. The Milbank Quarterly 2009; 87(2): 339–367 at 362–363.
  27. Jump up^ Roughead E, Lopert R and Sansom L. Prices for innovative pharmaceutical products that provide health gain: a comparison between Australia and the United States Value in Health 2007;10:514–20
  28. Jump up^ Hughes B. Payers Growing Influence on R&D Decision Making. Nature Reviews Drugs Discovery 2008; 7: 876–78.
  29. Jump up^ Faunce T, Bai J and Nguyen D. Impact of the Australia-US Free Trade Agreement on Australian medicines regulation and prices. Journal of Generic Medicines 2010; 7(1): 18-29
  30. Jump up^ Faunce TA. Global intellectual property protection of “innovative” pharmaceuticals:Challenges for bioethics and health law in B Bennett and G Tomossy (eds) Globalization and Health Springer 2006 http://law.anu.edu.au/StaffUploads/236-Ch%20Globalisation%20and%20Health%20Fau.pdf . Retrieved 18 June 2009.
  31. Jump up^ Faunce TA. Reference pricing for pharmaceuticals: is the Australia-United States Free Trade Agreement affecting Australia’s Pharmaceutical Benefits Scheme? Medical Journal of Australia. 2007 Aug 20;187(4):240–2.
  32. Jump up^ “Tools”. Statsamerica.org. Retrieved 2011-09-07.
  33. Jump up^ “Innovation Indicator 2011”. 2011. Retrieved 2012-05-27.
  34. Jump up^ “U.S. Ranks #8 In Global Innovation Index”. Industryweek.com. 2009-03-10. Retrieved 2009-08-28.
  35. Jump up^ “The Innovation Imperative in Manufacturing: How the United States Can Restore Its Edge” (PDF). Retrieved 2009-08-28.
  36. Jump up to:a b Huebner, J. (2005). “A possible declining trend for worldwide innovation”. Technological Forecasting and Social Change 72 (8): 980–986. doi:10.1016/j.techfore.2005.01.003.edit
  37. Jump up^ Adler, Robert (2 July 2005). “Entering a dark age of innovation”New Scientist. Retrieved 30 May 2013.
  38. Jump up^ Hayden, Thomas (July 7, 2005). “Science: Wanna be an inventor? Don’t bother”U.S News and World Report. Retrieved 10 June 2013.
  39. Jump up^ Smart, J. (2005). “Discussion of Huebner article”.Technological Forecasting and Social Change 72 (8): 988–995.doi:10.1016/j.techfore.2005.07.001edit
  40. Jump up^ Strumsky, D.; Lobo, J.; Tainter, J. A. (2010). “Complexity and the productivity of innovation”. Systems Research and Behavioral Science 27 (5): 496. doi:10.1002/sres.1057edit
  41. Jump up^ http://www.eda.gov/PDF/EDA_FY_2010_Annual_Report.pdf
  42. Jump up^ “Science and Technology”. MEXT. Retrieved 2011-09-07.
  43. Jump up^ “BMBF ” Ministry”. Bmbf.de. Retrieved 2011-09-07.
  44. Jump up^ http://www.landgate.wa.gov.au/innovation
  45. Jump up^ http://www.tropicalinnovationawards.com

External links[edit]

[show]

Inventions and discoveries by nation or region
[show]

Aspects of capitalism

Leave a comment